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The past decade has witnessed a coming-together of 
the technological networks that connect computers 
on the Internet and the social networks that have 
linked humans for millennia. Beyond the artifacts that 
have sprung from this development—sites such as 
facebook, LinkedIn, MySpace, Wikipedia, digg, del.
icio.us, YouTube, and flickr—there is a broader process 
at work, a growing pattern of movement through 
online spaces to form connections with others, build 
virtual communities, and engage in self-expression. 

Even as these new media have led to changes in our 
styles of communication, they have also remained 
governed by longstanding principles of human social 

interaction—principles that can now 
be observed and quantified at unprec-
edented levels of scale and resolution 
through the data being generated by 
these online worlds. Like time-lapse 
video or photographs through a micro-
scope, these images of social networks 
offer glimpses of everyday life from 
an unconventional vantage point—
images depicting phenomena such 
as the flow of information through an 
organization or the disintegration of 
a social group into rival factions. Sci-
ence advances whenever we can take 
something that was once invisible and 
make it visible; and this is now taking 
place with regard to social networks 
and social processes.

Collecting social-network data has 
traditionally been hard work, requir-
ing extensive contact with the group 
of people being studied; and, given 
the practical considerations, research 
efforts have generally been limited to 
groups of tens to hundreds of indi-
viduals. Social interaction in online 
settings, on the other hand, leaves ex-
tensive digital traces by its very nature. 
At the scales of tens of millions of in-
dividuals and minute-by-minute time 
granularity, we can replay and watch 
the ways in which people seek out con-
nections and form friendships on a site 
like Facebook or how they coordinate 
with each other and engage in creative 
expression on sites like Wikipedia and 
flickr. We can observe a news story sud-
denly catching the attention of millions 
of readers or witness how looming 
clouds of controversy gather around 
a community of bloggers. These are 
part of the ephemeral dynamics of or-
dinary life, now made visible through 
their online manifestations. As such, 
we are witnessing a revolution in the 
measurement of collective human 
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Internet-based data on human interaction 
connects scientific inquiry like never before.
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The Nexus friend grapher application, created 
by Ivan Kozik, allows Facebook account holders 
to generate graphs illustrating their social 
network of friends. The resulting spheres not only 
demonstrate how friends are connected, but also 
indicate the interests shared by different groups 
of friends. For more information, or to create  a 
graph, visit http://nexus.ludios.net.
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vation period.26 The researchers found 
the average length of the shortest path 
between any two people on this system 
to be around 6.6—a number remark-
ably close to Milgram’s, and obtained 
by utterly different means.

Modeling the Phenomenon. Math-
ematical models of this phenomenon 
start by asking why social networks 
should be so rich in short paths. In 
an influential 1998 paper, Watts and 
Strogatz sought to reconcile this abun-
dance with the seemingly contrasting 
observation that the world is highly 
clustered, consisting of acquaintanc-
es who tend to be geographically and 
socially similar to one another.40 They 
showed that adding even a small num-
ber of random social connections to 
a highly clustered network causes a 
rapid transition to a small world, with 
short paths appearing between most 
pairs of people. In other words, the 
world may look orderly and structured 
to each of us—with our friends and 
colleagues tending to know each other 
and have similar attributes—but a few 
unexpected links shortcutting through 
the network are sufficient to bring us 
all close together.

There is a further aspect to the 
Milgram experiment that is striking 
and inherently algorithmic: the ex-
periment showed not just that the 
short paths were there but that people 
were able to find them.20 When you 
ask someone in Omaha, Nebraska, 
as Milgram did, to use his or her so-
cial network to direct a letter halfway 
across the country to Sharon, Massa-
chusetts, that person can’t possibly 
know the precise course it will follow 
or whether it will even get there. The 
fact that so many of the letters zeroed 
in on the target suggests something 
powerful about the social network’s 
ability to “funnel” information toward 
far-off destinations. The U.S. Postal 
Service does this when it delivers a 
letter, but it is centrally designed and 
maintained at considerable cost to do 
precisely this job; why should a social 
network, which has grown organically 
without any central control, be able to 
accomplish the same task with any re-
liability at all?

To begin modeling this phenom-
enon, suppose we all lived on a two-
dimensional plane, spread out with a 
roughly uniform population density, 

behavior and the beginnings of a new 
research area—one that analyzes and 
builds theories of large social systems 
by using their reflections in massive 
datasets.

This line of investigation repre-
sents a flow of ideas between comput-
ing and the social sciences that goes 
in both directions. Using datasets on 
collective human behavior, together 
with an algorithmic language for mod-
eling social processes, we can begin to 
make progress on fundamental social-
science questions, informed by a com-
putational perspective. Meanwhile, 
social scientists’ insights into these 
problems, which predate the Inter-
net, are essential to understanding the 
current generation of computing sys-
tems. Indeed, most of the high-profile 
Internet applications to emerge over 
the past half-decade are governed not 
just by technological considerations 
but also by recurring and quantifiable 
principles of human social interac-
tion; both technological and social 
forces, working together, shape the 
inherent operating constraints in such 
systems.

The resulting research questions 
arise from a coming-together of dif-
ferent styles of research, and it is im-
portant to recognize that analyses of 
truly massive social networks provide 
us with both more and less than we 
get from detailed studies at smaller 
scales. Massive datasets can allow us 
to see patterns that are genuine, yet 
literally invisible at smaller scales. But 
working at a large scale introduces its 
own difficulties. One doesn’t necessar-
ily know what any one particular indi-
vidual or social connection signifies; 
and the friendships, opinions, and 
personal information that are revealed 
online come in varying degrees of reli-
ability. One is observing social activity 
in aggregate, but at a fine-grained level 
the data is more difficult to interpret. 
The true challenge is to bridge this gap 
between the massive and the detailed, 
to find the points where these lines of 
research converge.

With that goal in mind, we discuss 
two settings where this research strat-
egy is being pursued. We begin with 
the “small-world phenomenon” in so-
cial networks—the principle that we 
are all connected by short chains of 
acquaintances—and then look at the re-

lated problem of how ideas spread con-
tagiously through groups of people.

the small-World Phenomenon and 
Decentralized search
When the playwright John Guare 
coined the term “six degrees of sepa-
ration,”15 describing the notion that 
we are all just a few steps apart in the 
global social network, he was referring 
to a series of experiments peformed 
by the social psychologist Stanley Mil-
gram in the 1960s.38  Milgram’s work 
provided the first empirical evidence 
for this idea, and it is useful to consid-
er the structure of his experiments and 
their significance.

Inspired in part by the work of the 
political scientist Ithiel de Sola Pool 
with the applied mathematician Man-
fred Kochen,7 Milgram asked each of a 
few hundred people in Boston and the 
Midwest to try directing a letter toward 
a designated “target” in the network—
a stockbroker who lived in Sharon, 
Massachusetts. The participants in the 
experiment were given basic personal 
information about the target, includ-
ing his address and occupation; but 
each participant could only mail the 
letter to someone he or she knew on a 
first-name basis, with the instructions 
to forward it on in this way toward the 
target as quickly as possible. The mail 
thus closed in on the town of Sharon, 
moving from friend to friend, with the 
successful letters reaching the target 
in a median of six steps.38 This kind 
of experiment, constructing paths 
through social networks to distant tar-
get individuals, has been repeated by a 
number of other groups in subsequent 
decades.9, 12, 23

Milgram’s experiment and its fol-
low-ups come with many caveats. In 
particular, they have tended to be most 
successful when the target is affluent 
and socially accessible; and even then, 
many chains fail to complete. Never-
theless, the striking fact at the heart of 
the results—that such short paths can 
be discovered in social networks—has 
been borne out by many subsequent 
analyses of large-scale network data. 
Quite recently, Leskovec and Horvitz 
built a social network from nearly a 
quarter-billion instant-messaging ac-
counts on MSN Messenger, connect-
ing two individuals if they engaged in a 
conversation over a one-month obser-
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and that we each knew our next-door 
neighbors for some distance in each 
direction. Now, following Watts and 
Strogatz, we add a small number of 
random connections—say, each of 
us has a single additional friend cho-
sen uniformly at random from the 
full population. Short paths appear, 
as expected, but one can prove that 
there is no procedure the people liv-
ing in this world can perform—using 
only local information and without a 
global “bird’s-eye view” of the social 
network—to forward letters to faraway 
targets quickly.20 In other words, in a 
structured world supplemented with 
purely random connections, the Mil-
gram experiment would have failed: 
the short paths would have been there, 
but they would have been unfindable 
for people living in the network.

By extending things a little bit, how-
ever, we can get the model to capture 
the effect Milgram saw in real life. To 
do this, we keep everyone living on a 
two-dimensional plane but revisit the 
random connections, which are sup-
posed to account for the unexpected 
far-flung friendships that make the 
world small. In reality, of course, these 
links are not completely random; 
they too are biased toward closer and 
more similar people. Suppose, then, 
that each person still has a random 
far-away friend, but that this friend 
is chosen with a probability that de-
cays with the individual’s distance 
in the plane—say, by a “gravitational 
law” in which the probability of being 
friends with a person at a distance d 
decays as d−r for some power r. Thus, 
as the exponent r increases, the world 
gets less purely random—the long-
range friendships are still potentially 
far away, but overall they are more 
geographically clustered. What effect 
does this have on searching for targets 
in the network?

Analyzing this model, one finds 
that the effectiveness of Milgram-style 
search with local information initially 
gets better as r increases—because the 
world is becoming more orderly and 
easy to navigate—and then gets worse 
again as r continues increasing—
because short paths actually start be-
coming too rare in the network. The 
best choice for the exponent r, when 
search is in fact very rapid, is to set it 
equal to 2. In other words, when the 

probability of friendship falls off like 
the square of the distance, we have a 
small world in which the paths are 
not only there but also can be found 
quickly by people operating without 
a global view.20 The exponent of 2 is 
thus balanced at a point where short 
paths are abundant, but not so abun-
dant as to be too disorganized to use. 

Further analysis indicates that this 
best exponent in fact has a simple 
qualitative property that helps us un-
derstand its special role: when friend-
ships fall off according to an inverse-
square law in two dimensions, then on 
average people have about the same 
proportion of friends at each “scale 
of resolution”—at distances 1–10, 10–
100, 100–1000, and so on. This prop-
erty lets messages descend gradually 
through these distance scales, find-
ing ways to get significantly closer to 
the target at each step and in this way 
completing short chains, just as Mil-
gram observed.

Validating and Applying the Model. 
When such models were first proposed, 
it was unclear not only how accurate 
they were in real life but also how to go 
about collecting data to measure the 
accuracy. To do so, you would have to 
convince thousands of people to report 
where they lived and who their friends 
were—a daunting task.

But of course, the public profiles 
on social-networking sites readily do 
just that, and as these sites began to 
grow explosively in 2003 and 2004, Li-
ben-Nowell et al. developed a frame-
work for using this type of data to test 
the predictions of the small-world 
models.30 In particular, they collected 
data from the friendship network of 
the public blogging site LiveJournal, 
focusing on half a million people who 
reported U.S. hometown locations 
and lists of friends on the site. They 
then had to extend the mathematical 
models to deal with the fact that real 
human population densities are high-
ly nonuniform. To do so, they defined 
the distance between two people in an 
ordinal rather than absolute sense: 
they based the probability that a per-
son v forms a link to a person w on the 
number of people who are closer to v 
than w is, rather than on the physical 
distance between v and w. Using this 
more flexible definition, the distribu-
tion of friendships in the data could 

a rumor, a political 
message, or a 
link to an online 
video—these are 
all examples of 
information that 
can spread from 
person to person, 
contagiously, in the 
style of an epidemic. 
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are built on the principle that there 
should not be a central index of the 
content being shared (in contrast, for 
example, to the way in which search 
engines like Google provide a central 
index for Web pages). As a result, look-
ing up content in a peer-to-peer sys-
tem follows a Milgram-style approach 
in which the hosts participating in the 
system must forward requests with 
only a local view.31 Mathematical mod-
els of small worlds—originally built 
with human networks in mind—can 
provide insights into the design of ef-
ficient solutions for this distributed 
search problem as well.

We’ve thus seen how viewing such 
models in the online domain can help 
us understand the global layout of so-
cial-networking sites, the flow of com-
munications within organizations, 
and the design of peer-to-peer systems. 
We now look at how the insights we’ve 
gained here can provide perspective 
on an important related problem—the 
spread of information through large 
populations.

social contagion and  
the spread of ideas
Milgram’s experiment was about fo-
cusing a message on a particular target, 
but much of the information that flows 
through a social network radiates out-
ward in many directions at once. A ru-
mor, a political message, or a link to an 
online video—these are all examples 
of information that can spread from 
person to person, contagiously, in the 
style of an epidemic. This is an impor-
tant process to understand because it 
is part of a broader pattern by which 
people influence one another over lon-
ger periods of time, whether in online 
or offline settings, to form new politi-
cal and social beliefs, adopt new tech-
nologies, and change personal behav-
ior—a process that sociologists refer to 
as the “diffusion of innovations.”35 But 
while the outcomes of many of these 
processes are easily visible, their inner 
workings have remained elusive.

Some of the basic mathematical 
models for the diffusion of innova-
tions posit that people’s adoption of 
new behaviors depends in a proba-
bilistic way on the behaviors of their 
neighbors in the social network: as 
more and more of your friends buy a 
new product or join a new activity, you 

then in fact be closely approximated 
by the natural generalization of the 
inverse-square law.

It was difficult not to be a bit sur-
prised by the alignment of theory and 
measurement. The abstract models 
were making very specific predictions 
about how friendships should depend 
on physical distance, and these predic-
tions were being approximately borne 
out on data arising from real-world 
social networks. And there remains a 
mystery at the heart of these findings. 
While the fact that the distributions 
are so close does not necessarily imply 
the existence of an organizing mecha-
nism (for example, see Bookstein5 for 
a discussion of this general issue in 
the context of social-science data), it is 
still natural to ask why real social net-
works have arranged themselves in a 
pattern of friendships across distance 
that is close to optimal for forwarding 
messages to faraway targets. Further, 
whatever the users of LiveJournal are 
doing, they are not explicitly trying to 
run versions of the Milgram experi-
ment—if there are selective pressures 
driving the network toward this shape, 
they must be more implicit, and it re-
mains a fascinating open question 
whether such forces exist and how they 
might operate.

Other research using online data 
has considered how friendship and 
communication depend on nongeo-
graphic notions of “distance.” For ex-
ample, the probability that you know 
someone is affected by whether you 
and they have similar occupations, 
cultural backgrounds, or roles within 
a large organization. Adamic and Adar 
studied how communication depends 
on one such kind of distance: they 
measured how the rate of email mes-
saging between employees of a corpo-
rate research lab fell off as they looked 
at people who were farther and farther 
apart in the organizational hierarchy.1 
Here too, this rate approximated an 
analogue of the inverse-square law—
in a form adapted to hierarchies21, 

39—although the messages in the re-
searchers’ data were skewed a bit more 
toward long-range contacts in the or-
ganization than short-range ones.

Finally, these models can rapidly 
turn into design principles for distrib-
uted computing systems as well. Mod-
ern peer-to-peer file-sharing systems 

are more likely to do so as well.13 Re-
cent studies of online data have pro-
vided some of the first pictures of what 
this dependence looks like over large 
populations. In particular, Leskovec, 
Adamic, and Huberman studied how 
the probability of purchasing books, 
DVDs, and music from a large online 
retailer increased with the number of 
email recommendations a potential 
customer received.25 Backstrom et al. 
determined the probability of joining 
groups in a large online community 
as a function of the number of friends 
who already belonged to the group.4 
And Hill, Provost, and Volinsky16 ana-
lyzed how an individual’s adoption 
of a consumer telecommunications 
service plan depended on his or her 
connections to prior adopters of the 
service.

While the probability of adopting 
a behavior increases with the number 
of friends who have already adopted it, 
there is a “diminishing returns” pat-
tern in which the marginal effect of 
each successive friend decreases.4,25 

In many cases, however, an interest-
ing deviation from this pattern is ob-
served—a “0–1–2 effect,” in which the 
probability of joining an activity when 
two friends have done so is significant-
ly more than twice the probability of 
joining when only one has done so.4 

The structure of cascading behavior. 
Beyond these local mechanisms of so-
cial influence, it is instructive to trace 
out the overall patterns by which influ-
ence propagates through a large social 
network. In recent work, David Liben-
Nowell and I investigated such global-
scale processes by gathering data on 
chain-letter petitions that had spread 
widely over the Internet.29 A particular-
ly pervasive chain letter, which spread 
in 2002 and 2003, purported to orga-
nize opposition to the impending inva-
sion of Iraq. Each copy of the petition 
contained the list of people who had 
received that particular copy, in the 
order in which they added their names 
and then passed it on to others in their 
email address books. In the process, 
several hundred of these copies had 
been sent to Internet mailing lists; by 
retrieving them from the mailing lists’ 
archives, we could reconstruct a large 
fragment of the branching tree-like 
trajectory by which the chain letter 
had spread.
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The structure of the tree was sur-
prising, as it challenged our small-
world intuitions. Rather than fanning 
out widely, reaching many people with 
only a few degrees of separation, the 
chain letter spread in a deep and nar-
row pattern, with many paths consist-
ing of several hundred steps. The short 
chains in the social network were still 
there, but the chain letter was getting 
to people by much more roundabout 
means. Moreover, we found a very sim-
ilar structure for the one other large-
scale chain letter on which we could 
find enough mailing-list data, this one 
claiming to be organizing support for 
National Public Radio.

Why this deep and narrow spread-
ing pattern arises in multiple settings 
remains something of a mystery, but 
there are several hypotheses for recon-
ciling it with the structure of a small 
world. In our work on chain letters, we 
analyzed a model based on the natural 
idea that people take widely varying 
amounts of time to act on messages 
as they arrive: when recipients forward 
the chain letter at different times to 
highly overlapping circles of friends, 
it can in effect “echo” through dense 
clusters in the social network, follow-
ing a snaking path rather than a direct 
one. Simulations of this process on 
real social networks such as the one 
from LiveJournal produce tree struc-
tures very similar to the true one we 
observed.29

It is also plausible that the nature 
of social influence—properties such 
as the 0–1–2 effect in particular—play 
an important role. Suppose that most 
people in the social network need 
to receive a copy of the letter at least 
twice before actually signing their 
name and sending it on. As Centola 
and Macy have recently argued, our 
long-range friendships may be much 
less useful for spreading information 
in situations such as these: you can 
learn of something the first time from 
a far-flung friend, but to get a second 
confirmatory hearing you may need 
to wait for the information also to ar-
rive through your more local contacts.6 
Such a pattern could slow down the 
progress of a chain letter, forcing it to 
slog through the dense structure of our 
local connections rather than exploit 
the long-range shortcuts that make 
the world small.

Contagion as a design principle. As 
with the decentralized search prob-
lem at the heart of the small-world 
phenomenon, the idea of contagion in 
networks has served as a design princi-
ple for a range of information systems. 
Early work in distributed computing 
proposed the notion of “epidemic al-
gorithms,” in which information up-
dates would be spread between hosts 
according to a probabilistic contagion 
rule.8 This has led to an active line of 
research, based on the fact that such 
algorithms can be highly robust and 
relatively simple to configure at each 
individual node.

More recently, contagion and cas-
cading behavior have been employed 
in proposals for social computing 
applications such as word-of-mouth 
recommendation systems,25 incentive 
mechanisms for routing queries to in-
dividuals possessing relevant informa-
tion,22 and methods to track the spread 
of information among Weblogs.2, 14 
Large-scale social contagion  data 
also provides the opportunity to iden-
tify highly influential sets of people 
in a social network—the set of people 
who would trigger the largest cascade 
if they were to adopt an innovation.11 
The search for such influential sets 
is a computationally difficult prob-
lem, although recent work has shown 
that when social influence follows the 
kind of “diminishing returns” pattern 
discussed here, it is possible to find 
approximate methods with provable 
guarantees.19, 32

further Directions
Research on large-scale social-network 
data is proceeding in many further di-
rections as well. While much of what 
we have been discussing involves the 
dynamic behavior of individuals in so-
cial networks, an important and com-
plementary area of inquiry is how the 
structure of the network itself evolves 
over time.

Recent studies of large datasets have 
shed light on several important princi-
ples of network evolution. A central one, 
rooted in early work in the social sci-
ences, is the principle of “preferential 
attachment”—the idea that nodes that 
already have many links will tend to ac-
quire them at a greater rate.33 An active 
line of research has shown how prefer-
ential attachment can lead to the highly 

the availability 
of such rich and 
plentiful data on 
human interaction 
has closed an 
important feedback 
loop, allowing us 
to develop and 
evaluate models of 
social phenomena 
at large scales and 
to use these models 
in the design of 
new computing 
applications.
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skewed distributions of links that one 
sees in real networks, with certain nodes 
acting as highly connected “hubs.”3 

Another principle, also a key issue 
in sociology, is the notion of “triadic 
closure:” links are much more likely 
to form between two people when they 
have a friend in common.34 Recent 
work using email logs has provided 
some of the first concrete measure-
ments of the effect of triadic closure in 
a social-communication network.24

Further principles have begun to 
emerge from recent studies of social and 
information networks over time, includ-
ing “densification effects,” in which the 
number of links per node increases as 
the network grows, and “shrinking di-
ameters,” in which the number of steps 
in the shortest paths between nodes can 
actually decrease even as the total num-
ber of nodes is increasing.27

It is also intriguing to ask whether 
machine-learning techniques can be 
effective at predicting the outcomes 
of social processes from observations 
of their early stages. Problems here in-
clude the prediction of new links, the 
participation of people in new activ-
ities, the effectiveness of groups at 
collective problem-solving, and the 
growth of communities over time.4, 

16, 17, 18, 28, 37 Recent work by Salganik, 
Dodds, and Watts raises the interest-
ing possibility that the outcomes of 
certain types of social-feedback effects 
may in fact be inherently unpredict-
able.36 Through an online experiment 
in which participants were assigned 
to multiple, independently evolving 
versions of a music-download site—
essentially, a set of artificially con-
structed “parallel universes” in which 
copies of the site could develop inde-
pendently—Salganik et al. found that 
when feedback was provided to users 
about the popularity of the items being 
downloaded, early fluctuations in the 
popularities of different items could 
get locked in to produce very different 
long-term trajectories of popularity. 
Developing an expressive computa-
tional model for this phenomenon is 
an interesting open question.

Ultimately, across all these do-
mains, the availability of such rich 
and plentiful data on human interac-
tion has closed an important feedback 
loop, allowing us to develop and evalu-
ate models of social phenomena at 

large scales and to use these models 
in the design of new computing ap-
plications. Such questions challenge 
us to bridge styles of scientific inqui-
ry—ranging from subtle small-group 
studies to computation on massive 
datasets—that traditionally have had 
little contact with each other. And they 
are compelling questions in need of 
answers—because at their heart, they 
are about the human and technologi-
cal connections that link us all, and 
the still-mysterious rhythms of the 
networks we inhabit.

acknowledgments
I thank the National Science Founda-
tion, the MacArthur Foundation, the 
Cornell Institute for the Social Sci-
ences, Google, and Yahoo for their 
support and the anonymous reviewers 
of this manuscript for their comments 
and feedback. 

References
1. adamic, l. and adar, e. how to search a social network. 

Social Networks 27, 3 (2005), 187–203.
2. adar, e., zhang, l., adamic, l.a., and lukose, r.m. 

implicit structure and the dynamics of blogspace. 
in Proceedings of the Workshop on the Weblogging 
Ecosystem, 2004.

3. albert, r. and barabósi, a-l. statistical mechanics 
of complex networks. Reviews of Modern Physics 74 
(2002), 47–97.

4. backstrom, l., huttenlocher, d., Kleinberg, J., and 
lan, x. Group formation in large social networks: 
membership, growth, and evolution. in Proceedings of 
the 12th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 2006.

5. bookstein, a. informetric distributions, part ii: 
resilience to ambiguity. J. American Society for 
Information Science 41, 5 (1990), 376–386.

6. Centola, d. and macy, m. Complex contagions and the 
weakness of long ties. American J. of Sociology 113 
(2007), 702–734.

7. de sola pool, i. and Kochen, m. Contacts and influence. 
Social Networks 1, 1 (1978) 5–51.

8. demers, a.J., Greene, d.h., hauser, C., irish, W., 
larson, J., shenker, s., sturgis, h.e., swinehart, d.C., 
and terry, d.b. epidemic algorithms for replicated 
database maintenance. in Proceedings of the 6th ACM 
Symposium on Principles of Distributed Computing 
(1987), 1–12.

9. dodds, p., muhamad, r., and Watts, d. an experimental 
study of search in global social networks. Science 301 
(2003), 827–829.

10. dodds, p. and Watts, d. universal behavior in a 
generalized model of contagion. Physical Review 
Letters 92 (2004).

11. domingos, p. and richardson, m. mining the network 
value of customers. in Proceedings of the 7th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining (2001), 57–66.

12. Garfield, e. it’s a small world after all. Current 
Contents 43 (1979), 5–10.

13. Granovetter, m. threshold models of collective 
behavior. American J. Sociology 83 (1978), 1420–1443.

14. Gruhl, d., liben-nowell, d., Guha, r.v., and tomkins, 
a. information diffusion through blogspace. in 
Proceedings of the 13th International World Wide Web 
Conference, 2004.

15. Guare, J. Six Degrees of Separation: A Play. vintage 
books, 1990.

16. hill, s., provost, f., and volinsky, C. network-based 
marketing: identifying likely adopters via consumer 
networks. Statistical Science 21, 2 (2006), 256–278.

17. hoff, p.d., raftery, a.e., and handcock, m.s. latent 
space approaches to social network analysis. J. 




